Elasticity imaging of polymeric media.

نویسندگان

  • Mallika Sridhar
  • Jie Liu
  • Michael F Insana
چکیده

Viscoelastic properties of soft tissues and hydropolymers depend on the strength of molecular bonding forces connecting the polymer matrix and surrounding fluids. The basis for diagnostic imaging is that disease processes alter molecular-scale bonding in ways that vary the measurable stiffness and viscosity of the tissues. This paper reviews linear viscoelastic theory as applied to gelatin hydrogels for the purpose of formulating approaches to molecular-scale interpretation of elasticity imaging in soft biological tissues. Comparing measurements acquired under different geometries, we investigate the limitations of viscoelastic parameters acquired under various imaging conditions. Quasi-static (step-and-hold and low-frequency harmonic) stimuli applied to gels during creep and stress relaxation experiments in confined and unconfined geometries reveal continuous, bimodal distributions of respondance times. Within the linear range of responses, gelatin will behave more like a solid or fluid depending on the stimulus magnitude. Gelatin can be described statistically from a few parameters of low-order rheological models that form the basis of viscoelastic imaging. Unbiased estimates of imaging parameters are obtained only if creep data are acquired for greater than twice the highest retardance time constant and any steady-state viscous response has been eliminated. Elastic strain and retardance time images are found to provide the best combination of contrast and signal strength in gelatin. Retardance times indicate average behavior of fast (1-10 s) fluid flows and slow (50-400 s) matrix restructuring in response to the mechanical stimulus. Insofar as gelatin mimics other polymers, such as soft biological tissues, elasticity imaging can provide unique insights into complex structural and biochemical features of connectives tissues affected by disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging.

Ultrasonic elasticity imaging enables visualization of soft tissue deformation for medical diagnosis. Our aim is to understand the role of flow-dependent and flow-independent viscoelastic mechanisms in the response of biphasic polymeric media, including biological tissues and hydrogels, to low-frequency forces. Combining the results of confined and unconfined compression experiments on gelatin ...

متن کامل

Thermo-elasticity for anisotropic media in higher dimensions

In this note we develop tools to study the Cauchy problem for the system of thermo-elasticity in higher dimensions. The theory is developed for general homogeneous anisotropic media under non-degeneracy conditions. For degenerate cases a method of treatment is sketched and for the cases of cubic media and hexagonal media detailed studies are provided.

متن کامل

Poly (vinylpyrrolidone)-Grafted Silica as a Polymeric Cosolvent Catalyst for Organic Transformations in Organic and Aqueous Media

Poly (vinylpyrrolidone)-grafted silica as an organic-inorganic hybrid material was used as an effective heterogeneous polymeric cosolvent catalyst in organic reactions. This modified silica catalyzed nucleophilic displacement of alkyl halides for easy preparation of alkyl thiocyanates, alkyl cyanides, alkyl azides and alkyl aryl ethers. Furthermore, the catalyst was applied for the conversion o...

متن کامل

Equilibrium Swelling of Highly Cross-Linked Polymeric Resins

A modified expression for the change in chemical potential of a solvent, in a polymer network, due to isotropic swelling was obtained by substituting a non-Gaussian chain length probability distribution in Flory’s statistical analysis of rubber elasticity. The affine non-Gaussian expression for the free energy change due to elastic deformation was compared to both the traditional Flory and the ...

متن کامل

A Maximum Entropy Principle Based Closure Method for Macro-micro Models of Polymeric Materials

We consider the finite extensible nonlinear elasticity (FENE) dumbbell model in viscoelastic polymeric fluids. We employ the maximum entropy principle for FENE model to obtain the solution which maximizes the entropy of FENE model in stationary situations. Then we approximate the maximum entropy solution using the second order terms in microscopic configuration field to get an probability densi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 129 2  شماره 

صفحات  -

تاریخ انتشار 2007